Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6817-6829, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427023

RESUMO

N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.


Assuntos
Compostos Heterocíclicos , Peptidoglicano , Humanos , Azidas , Ácidos Murâmicos , Reação de Cicloadição , Alcinos
2.
Front Fungal Biol ; 5: 1332755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465255

RESUMO

Biological control uses naturally occurring antagonists such as bacteria or fungi for environmentally friendly control of plant pathogens. Bacillus spp. have been used for biocontrol of numerous plant and insect pests and are well-known to synthesize a variety of bioactive secondary metabolites. We hypothesized that bacteria isolated from agricultural soil would be effective antagonists of soilborne fungal pathogens. Here, we show that the Delaware soil isolate Bacillus velezensis strain S4 has in vitro activity against soilborne and foliar plant pathogenic fungi, including two with a large host range, and one oomycete. Further, this strain shows putative protease and cellulase activity, consistent with our prior finding that the genome of this organism is highly enriched in antifungal and antimicrobial biosynthetic gene clusters. We demonstrate that this bacterium causes changes to the fungal and oomycete hyphae at the inhibition zone, with some of the hyphae forming bubble-like structures and irregular branching. We tested strain S4 against Magnaporthe oryzae spores, which typically form germ tubes and penetration structures called appressoria, on the surface of the leaf. Our results suggest that after 12 hours of incubation with the bacterium, fungal spores form germ tubes, but instead of producing appressoria, they appear to form rounded, bubble-like structures. Future work will investigate whether a single antifungal molecule induces all these effects, or if they are the result of a combination of bacterially produced antimicrobials.

3.
Plant Physiol ; 194(3): 1481-1497, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38048422

RESUMO

Plant extracellular vesicles (EVs) are membrane-bound organelles involved mainly in intercellular communications and defense responses against pathogens. Recent studies have demonstrated the presence of proteins, nucleic acids including small RNAs, and lipids along with other metabolites in plant EVs. Here, we describe the isolation and characterization of EVs from sorghum (Sorghum bicolor). Nanoparticle tracking analysis, dynamic light scattering, and cryo-electron tomography showed the presence of a heterogeneous population of EVs isolated from the apoplastic wash of sorghum leaves. Cryo-electron microscopy revealed that EVs had a median size of 110 nm and distinct populations of vesicles with single or multiple lipid bilayers and low or high amounts of contents. The heterogeneity was further supported by data showing that only a subset of EVs that were stained with a membrane dye, Potomac Gold, were also stained with the membrane-permeant esterase-dependent dye, calcein acetoxymethyl ester. Proteomic analysis identified 437 proteins that were enriched in multiple EV isolations, with the majority of these also found in the EV proteome of Arabidopsis (Arabidopsis thaliana). These data suggest a partial conservation of EV contents and function between the monocot, sorghum, and a distantly related eudicot, Arabidopsis.


Assuntos
Arabidopsis , Vesículas Extracelulares , Sorghum , Proteoma , Arabidopsis/genética , Sorghum/genética , Microscopia Crioeletrônica , Proteômica , Grão Comestível
4.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010277

RESUMO

Understanding how plants and pathogens interact, and whether that interaction culminates in defense or disease, is required to develop stronger and more sustainable strategies for plant health. Advances in methods that more effectively image plant-pathogen samples during infection and colonization have yielded tools such as the rice leaf sheath assay, which has been useful in monitoring infection and early colonization events between rice and the fungal pathogen, Magnaporthe oryzae. This hemi-biotrophic pathogen causes severe disease loss in rice and related monocots, including millet, rye, barley, and more recently, wheat. The leaf sheath assay, when performed correctly, yields an optically clear plant section, several layers thick, which allows researchers to perform live-cell imaging during pathogen attack or generate fixed samples stained for specific features. Detailed cellular investigations into the barley-M. oryzae interaction have lagged behind those of the rice host, in spite of the growing importance of this grain as a food source for animals and humans and as fermented beverages. Reported here is the development of a barley leaf sheath assay for intricate studies of M. oryzae interactions during the first 48 h post-inoculation. The leaf sheath assay, regardless of which species is being studied, is delicate; provided is a protocol that covers everything, from barley growth conditions and obtaining a leaf sheath, to inoculation, incubation, and imaging of the pathogen on plant leaves. This protocol can be optimized for high-throughput screening using something as simple as a smartphone for imaging purposes.


Assuntos
Ascomicetos , Hordeum , Magnaporthe , Oryza , Humanos , Smartphone , Doenças das Plantas/microbiologia
5.
Mol Plant Microbe Interact ; 34(10): 1209-1211, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34662144

RESUMO

Colletotrichum species are globally distributed and well known as members of a destructive phytopathogenic genus, causing the anthracnose disease in a wide variety of crops and fruits. Colletotrichum sublineola is the causal agent of the anthracnose disease in sorghum, causing losses of up to 50% in yield. Here, we used PacBio sequencing combined with RNA-seq to generate a chromosome-level assembly and annotation of the Colletotrichum sublineola strain CsGL1.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Colletotrichum , Sorghum , Colletotrichum/genética , Doenças das Plantas , Sorghum/genética , Transcriptoma/genética
6.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713125

RESUMO

At the neuromuscular junction (NMJ), postsynaptic ionotropic acetylcholine receptors (AChRs) transduce a chemical signal released from a cholinergic motor neuron into an electrical signal to induce muscle contraction. To identify regulators of postsynaptic function, we conducted a genome-wide RNAi screen for genes required for proper response to levamisole, a pharmacological agonist of ionotropic L-AChRs at the Caenorhabditis elegans NMJ. A total of 117 gene knockdowns were found to cause levamisole hypersensitivity, while 18 resulted in levamisole resistance. Our screen identified conserved genes important for muscle function including some that are mutated in congenital myasthenic syndrome, congenital muscular dystrophy, congenital myopathy, myotonic dystrophy, and mitochondrial myopathy. Of the genes found in the screen, we further investigated those predicted to play a role in endocytosis of cell surface receptors. Loss of the Epsin homolog epn-1 caused levamisole hypersensitivity and had opposing effects on the levels of postsynaptic L-AChRs and GABAA receptors, resulting in increased and decreased abundance, respectively. We also examined other genes that resulted in a levamisole-hypersensitive phenotype when knocked down including gas-1, which functions in Complex I of the mitochondrial electron transport chain. Consistent with altered ATP synthesis impacting levamisole response, treatment of wild-type animals with levamisole resulted in L-AChR-dependent depletion of ATP levels. These results suggest that the paralytic effects of levamisole ultimately lead to metabolic exhaustion.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Levamisol/farmacologia , Músculos/metabolismo , Interferência de RNA
7.
Nat Genet ; 49(9): 1364-1372, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28740263

RESUMO

Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr9.02, associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Metiltransferases/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Apoptose/genética , Mapeamento Cromossômico/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metiltransferases/metabolismo , Microscopia de Fluorescência , Mutação , Fenilpropionatos/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zea mays/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...